Robotic Systems and Control

(Elective Subject)

Course Code:	17B1WEC733	Semester:	7 th Semester, B. Tech (ECE)	
Credits:	3	Contact Hours:	L-3, T-0, P-0	

Course Objectives

The objectives are to study

- 1. The Robotics' chief objective has always been associated with working for new and updated technologies, for example embedded systems, microcontrollers and VLSI.
- 2. To use the robotic system for logic building and programming.
- 3. To use the robotic kits to do any given engineering task which may have not been taught in class.

Course Outcomes

After studying this course the students would gain enough knowledge

- 1. Students will be equipped with the automation and brief history of robot and applications.
- 2. Students will be equipped with the principles of various sensors, actuators and their applications in robots.
- 3. Be able to analyze any physical system using mathematical model.
- 4. Be able to do the path planning on robotic systems using various control strategies.
- 5. Students will be equipped with the simulation and hands on robotic kits.

Course	Contents

Unit	Topics	References (chapter number, page no. etc)	Lectures
1.	Introduction to Robotics: Introduction – brief history, types, classification and usage, Science and Technology of robots, textbooks and research journals, introduction to simulation environment.	Spong : Chapter 1	3
2.	Elements of Robots: Joints, links, actuators, and sensors: Position and orientation of a rigid body, Homogeneous transformations, Representation of joints, link representation using D-H parameters, Examples of D-H parameters and link transforms, different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo motor, Types of transmissions, Purpose of sensors, internal and external sensors, common sensors – encoders, tachometers, strain gauge based force-torque sensors, proximity and distance measuring sensors, and vision.	Spong : Chapter 1, 2 eLSI project material	10

3	Robot Arm Kinematics and Dynamics: Forward kinematics, inverse kinematics, Lagrange formulation of dynamics.	Spong : Chapter 3, 4, 6	8	
4	Motion Planning and Control: Joint and Cartesian space trajectory planning and generation, Classical control concepts using the example of control of a single link, Independent joint PID control, Control of a multi-link manipulator, Non-linear model based control schemes, Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid position/force control, Advanced topics in non-linear control of manipulators.	Spong : Chapter 7, 8, 9	8	
5	Modeling and Control of Flexible Robot Manipulators: Models of flexible links and joints, Kinematic modeling of multi-link flexible robots, Dynamics and control of flexible link manipulators, Numerical simulations results.	Craig: Chapter 5 NPTEL lectures	6	
6	Robot Programming: MATLAB and other simulation platforms, Hands on experiment on robotic kits, working and implementing various Ad-on modules.	eLSI project material	6	
Total Number of Lectures				

Evaluation Scheme

- 1. Test 1 :15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

- 1. Spong and Vidyasagar, "Robot Dynamics and Control", John Wiley and Sons.
- 2. J. J. Craig, "Introduction to Robotics- Mechanics and Control", Pearson.
- 3. Sciavicco and Siciliano, "Modeling and Control of Robot Manipulators", McGraw Hill International Edition.

Reference Books/ Other resources

- 1. NPTEL Lectures: http://nptel.ac.in/courses/112101099/
- 2. Material provided by IIT Bomaby under eLSI project: