TIME-FREQUENCY ANALYSIS AND ITS APPLICATION

(Elective Subject)

Course Code:	17B1WEC731	Semester:	7 th Semester, B. Tech (ECE)
Credits:	3	Contact Hours:	L-3, T-0,P-0

Pre-requisites: Signal & System, Digital Signal Processing

Course Objectives:

The objective of this course to provide the understanding of basics concept and MATLAB based implementation of time-frequency analysis (TFA) tools for various applications.

Course Outcomes

After the study of this course students will be able to:

- 1. Understand the spectral analysis of the signals.
- 2. Understand the basics concept of the short time Fourier transform.
- 3. Familiar with the basics concept of the discrete wavelet transform /continuous wavelet transform.
- 4. Understand the basic concept of the distribution based Time-Frequency Analysis tools
- 5. Develop the TFA based algorithms for various applications.

Course Contents:

Unit	Topics	Text book	Lectures
1	Introduction to spectral analysis: Parametric and Non-	[1]	08
	Parametric methods		
2	Basic Concepts & Definition of time-frequency tools:	[2]	04
	Bandwidth Equation, uncertainty concept, Instantaneous		
	Frequency, Analytic Signals, Multicomponent Signals etc.		
3	Short Time Fourier Transform: Conditions for valid windows,	[2] & [6]	04
	Time domain and frequency domain formulations, Duality in the		
	interpretations, MATLAB based implementation of STFT		
4	Wavelet transforms: Introduction and basic concept of	[3] &[6]	04
	continuous and discrete wavelet transform, MATLAB based		
	implementation of wavelet transform.		
5	Distributions based time-frequency tools: Introduction and	[2] &[4]	06
	basic concept Wigner-Ville distribution & Cohen's class of		
	distribution etc. MATLAB based implementation of distribution		
	based time-frequency analysis tools.		
6.	Case studies: Joint Time-Frequency Transform/ Inverse Synthetic	[2], [3], [4]	16
	Aperture Radar, Joint Time-Frequency Representations/Time-	& [5]	
	Varying Signals, Economic Data Analysis with the Gabor		
	Spectgrogram, Gabor Spectrogram in Ultrasonic Nondestructive		
	Materials Evaluation, Applications of Time-Frequency Signal		
	Processing in Wireless Communications and Bioengineering		4.5
	Total Hours		42

Evaluation Scheme

1. Test 1 : 15 marks

2. Test 2 : 25 marks

3. Test 3 : 35 marks

4. Internal Assessment: 25 marks

1. 10 Marks : Class performance, Tutorials & Assignments

2. 10 Marks : Quizzes3. 5 marks : Attendance

Text Books

1. Hayes, M.H., "Statistical digital signal processing and modeling" Willey publishers

- **2.** Boualem Boashash, Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, Elsevier publishers, 2003
- **3.** S. Mallat, A Wavelet Tour of Signal Processing The Sparse Way. Elsevier, Third Edition, 2009.
- 4. L. Cohen, Time-Frequency Analysis. Prentice Hall, 1995.
- **5.** Hao Ling and Victor C. Chen, Time-frequency Transforms for Radar Imaging and Signal Analysis, Artech House Publishers, 2000
- **6.** http://nptel.ac.in/courses/117101001/: The lecture series on Wavelets and Multirate Digital Signal Processing created by Prof. Vikram M. Gadre in NPTEL.

REFERENCE BOOKS

- **1.** Stanskovic L., Dakovic, M., Thayparan, T., Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, Artech House Publishers.
- **2.** Karlheinz Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser publishers, 2001
- **3.** M. Vetterli, J. Kovacevic, and V. K. Goyal, Fourier and Wavelet Signal rocessing. Booksite: http://fourierandwavelets.org/terms.php

OTHER RESOURCES

Time-frequency toolbox (MATLAB) is available for download from http://tftb.nongnu.org/

http://nptel.ac.in/courses/117101001/1