BIOMEDICAL SIGNAL AND IMAGE PROCESSING

(Core Subject)

Course Code:	15M1WEC231	Semester:	2 th Semester, M. Tech (ECE)
Credits:	3	Contact Hours:	L-3, T-0, P-0

Course Objectives

The objectives are to:

- 1. Introduce various bioelectric signals and medical imaging modalities.
- 2. Implementation of different signal and image processing techniques on the acquired biomedical signals and images.

Course Outcomes

After studying this course the students would gain enough knowledge

- 1. Able to understand different types of bioelectric signals and their acquisition from human body.
- 2. Able to understand different types of medical imaging modalities and would be able to differentiate them with respect to their advantages and limitations.
- 3. Acquire an ability to analyze and process bioelectric signals.
- 4. Acquire an ability to analyze and process medical images.
- 5. Understand different feature extraction techniques and classifiers used for image classification.

Course Contents

Unit	Topics	References (chapter number, page no. etc)	Lectures
1.	Bioelectric signals: Electrical activities of the cell and propagation of electric potential as a wave, Acquisition of bioelectric signals, Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG), other biomedical signals: blood pressure, blood flow, Electrooculogram, respiratory signals, and ERG.	Kayvan: Chapter 8-12	12
2.	Medical Imaging modalities: Working principle, application and limitation of Computed tomography (CT), X-ray, Magnetic resonance imaging (MRI), Ultrasound imaging, and Positron emission tomography (PET).	Kayvan: Chapter 13-17	8
3	Digital Signal Processing: Introduction to processing and transformation of signals, Data Acquisition: Sampling in time, aliasing,	Kayvan: Chapter 1-2 Tamal: Chapter 1-2	10

	interpolation, and quantization, Difference equations, FIR and IIR filters, basic properties of discrete-time systems, convolution, Discrete-time Fourier transform and its properties. FIR filter design using windows, discrete Fourier transform and its properties, fast Fourier transform (FFT), Sampling and aliasing in time and frequency, spectral analysis.			
4	Image Processing I: Extension of filtering and Fourier methods to 2-D signals and systems, Image enhancement and restoration, Edge Detection and Image Segmentation Techniques.	Kayvan: Chapter 3-4	10	
5	Image Processing II: Introduction to feature extraction techniques, Clustering and classification of images.	Kayvan: Chapter 7	5	
Total Number of Lectures				

Evaluation Scheme

1. Test 1:15 marks

2. Test 2 : 25 marks

3. Test 3: 35 marks

4. **Internal Assessment**: 25 marks

• 10 Marks : Class performance, Tutorials & Assignments

10 Marks : Quizzes5 marks : Attendance

Text Books

1. Kayvan Najarian, Robert Splinter: Biomedical Signal and Image Processing. CRC Press, 2012

2. Tamal Bose: Digital Signal and Image Processing. John Wiley & Sons, 2004

Reference Books

- 1. Biomedical Image Analysis, Rangaraj M. Rangayyan, CRC Press, New York
- 2. Digital Image Processing, RC Gonzalez & RE Woods, Pearson Publishers, Third Edition