ADVANCE NEURAL NETWORKS

(Elective Subject)

Course Code:	13M1WEC231	Semester:	M. Tech. (ECE), 2 nd year
Credits:	3	Contact Hours:	L-3, T-0, P-0

Course Objectives

- 1. To understand the fundamental theory and concepts of neural networks, neuro-modeling, several neural network paradigms and its applications.
- 2. Expose the students to neural network applications in engineering design.

Course Outcomes

Upon completion of the course, the student are expected to

- 1. Comprehend the fundamental theory and concepts of neural networks, and compare Biological neuron and artificial neuron networks.
- 2. Assess the power and usefulness of artificial neural networks and identify different neural network architectures, algorithms, applications and their limitations.
- 3. Select appropriate neural network architectures for a given application (i.e. they shall recognize the class of applications and relate it to specific architectures).
- 4. To understand Reveal different applications of these models to solve engineering and other problems as pattern matching, control, optimization, and other areas.
- 5. Study and analyze a research paper on application of Neural networks and must orally present their projects in the class.

Course Contents

Unit	Topics	References (chapter number, page no. etc)	Lectures
1.	INTRODUCTION TO NEURAL NETWORKS: Artificial Neural Networks (ANN) and their biological roots and motivations. Comparison Between Artificial and Biological Neural Networks, Applications of Neural network. Network Architecture, Taxonomy of neural networks: feed forward and recurrent networks.	Haykins Chapter 1 Sivanandam Chapter 1 and 2	6
2.	LEARNING PROCESS: Types of learning, Error Correction learning, Memory based learning, Boltzmann learning, Credit Assignment Problem. Learning paradigms: supervised and unsupervised learning laws. Learning Laws: Hebb's rule, Delta rule, Widrow - Hoff (The Least-Mean-Square) learning rule, correlation learning rule, instar	Haykins Chapter 2 Sivanandam Chapter 2 and 3	10

	and outstar learning rules, Competitive				
	learning, Learning Tasks.				
3.	SUPERVISED LEANING: The Perceptron and	Sivanandam	12		
	its learning law, Classification of linearly	Chapter 3,4			
	separable patterns, Multi-Layer Perceptron,				
	Supervised Learning, Back-Propagation				
	Learning law. Feed forward networks,	Haykin			
	Recurrent Networks. RADIAL BASIS	Chapter 3,4,5			
	FUNCTION Neural Networks, Memory based				
	learning, , Boltzmann learning.				
4.	UNSUPERVISED LEANING: Winner takes-	Sivanandam	8		
	all Networks, Competitive Learning,	Chapter 5			
	Kohonen's Self organizing Maps Self-				
	organizing Feature-Mapping Algorithm;				
	Properties of SOM algorithms; Examples of	Haykin			
	Feature Maps; Applications and Adaptive	Chapter 9,14			
	Resonance Theory.	G: 1	~		
5.	APPLICATIONS OF NN:ANNs as signal	Sivanandam Chapter 5,6	5		
	processing devices: Classification, Function	Chapter 5,0			
	approximation and pattern recognition				
	problems. Solving Optimization Problems, Solving Traveling Salesman Problems.				
	Application in Handwritten Character				
	Recognition, Biomedical, Communication, and				
	Healthcare.				
	One project- Research paper or design		3		
6.	engineering problem		3		
Total Number of Lectures					
1 otal Number of Lectures					

Evaluation Scheme

Test 1: 15 marks
 Test 2: 25 marks
 Test 3: 35 marks

4. **Internal Assessment**: 25 marks

• 10 Marks : Class performance, Tutorials & Assignments

10 Marks : Quizzes5 marks : Attendance

Text Books

- 1. Simon Haykin, "Artificial Neutral Networks".
- 2. Yegna Narayanan, "Artificial Neural Networks".
- 3. S.N.Sivanandam, S.Sumathi, "Introduction to Neural Networks using MATLAB".

4. S.N.Sivanandam, S.N Deepa, "Principles of Soft Computing".

Reference Books

- 1. L. Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms, and Applications", Prentice-Hall, 1994
- 2. Jack M. Zurada, "Introduction to Artificial Neural Systems", PWS Publishing Co., Boston, 2002.

ONLINE MATERIAL

http://nptel.ac.in/courses/117105084/

http://nptel.ac.in/courses/106105079/