MATHEMATICAL TECHNIQUE FOR ENGINEERS | Course Code: | 13M1WEC132 | Semester: | 1 st Semester, M. Tech. (ECE) | |--------------|------------|----------------|--| | Credits: | 3 | Contact Hours: | L-3, T-0,P-0 | **Pre-requisites:** Higher Engineering Mathematics # **Course Objectives:** The primary objective of this course is to provide the knowledge of mathematical tools which are useful for engineers. ## **Course Outcomes** Upon successful completion of this course the students will be able: - 1. To develop a mathematical model for different physical problems. - 2. To understand the vector spaces, and vectors, and their properties. - 3. To understand the different decomposition methods. - 4. To develop an algorithm using mathematical technique for the solution of the research problems of the areas like biomedical signal processing, radar signal processing, and communications etc. ## **Course Contents:** | Unit | Topics | Text book | Lectures | |------|--|-----------|----------| | 1. | Introduction to Systems of Linear Equations | [1] [5] | 08 | | | Gaussian Elimination | | | | | Matrices and Matrix Operations | | | | | Inverses; Algebraic Properties of Matrices Elementary Matrices | | | | | and a Method for Finding | | | | | More on Linear Systems and Invertible Matrices | | | | | Diagonal, Triangular, and Symmetric Matrices | | | | | Applications of Linear Systems | | | | | Network Analysis (Traffic Flow) | | | | | Electrical Circuits | | | | | Balancing Chemical Equations | | | | | Polynomial Interpolation | | | | | Leontief Input-Output Models | | | | 2. | Euclidean Vector Spaces | [1] [5] | 06 | | | Vectors in 2-Space, 3-Space, and n-Space | | | | | Norm, Dot Product, and Distance in Rn | | | | | Orthogonality | | | | | The Geometry of Linear Systems | | | | | Cross Product | | | |----|---|---------|----| | 3. | Real Vector Spaces, Subspaces, Linear Independence,
Coordinates and Basis, Dimension, Change of Basis, Row Space,
Column Space, and Null Space, Rank, Nullity,
and the Fundamental Matrix Spaces, Matrix Transformations from
to Properties of Matrix Transformations, | [1] [5] | 08 | | 4. | Eigen values and Eigenvectors, Diagonalization, Complex Vector Spaces, Differential Equations, Inner Products, Angle and Orthogonality in Inner Product Spaces, Gram—Schmidt Process; QR-Decomposition, Best Approximation; Least Squares Least Squares Fitting to Data, Function Approximation; Fourier Series, Orthogonal Matrices, Orthogonal Diagonalization Quadratic Forms, Optimization Using Quadratic Forms, Hermitian, Unitary, and Normal Matrices | [1] [5] | 08 | | 5. | Laplace Transform, Z-transform, Fourier Transform, DTFT, DFT, DCT, DST, STFT, and CWT with applications | [2][4] | 06 | | 6. | Basic Probability Concepts, Random variables, Special Probability Distributions | [3][6] | 06 | | | Total Lectures | | 42 | . ### **Evaluation Scheme** Test 1 : 15 marks Test 2 : 25 marks **3.** Test 3 : 35 marks **4. Internal Assessment**: 25 marks 1. 10 Marks : Class performance, Tutorials & Assignments 10 Marks : Quizzes 5 marks : Attendance ## **Text Books** - 1. Harword & Chriss Rorrers, "Elementary Linear Algebra". John Wiley & Sons, - **2** Proakis, John G. Digital signal processing: principles algorithms and applications. Pearson Education India. - **3.** Oliber C. lbe "Fundamentals of Applied Probability and Random Processes" 2^{nd} Edition, Academic Press is an imprint of Elsevier - **4.** S.Salivahanan, A, Vallavaraj, C Gnanapriya, "Digital Signal Processing", ,Tata McGraw-Hill Education, 2010 #### REFERENCE BOOKS - **5.** Kenneth Hoffman, "Linear Algebra" 2^{nd} edition, PHI Publishers - **6.** Hayes, Monson H. Digital signal processing Tata McGraw-Hill edition 2004