MATHEMATICAL TECHNIQUE FOR ENGINEERS

Course Code:	13M1WEC132	Semester:	1 st Semester, M. Tech. (ECE)
Credits:	3	Contact Hours:	L-3, T-0,P-0

Pre-requisites: Higher Engineering Mathematics

Course Objectives:

The primary objective of this course is to provide the knowledge of mathematical tools which are useful for engineers.

Course Outcomes

Upon successful completion of this course the students will be able:

- 1. To develop a mathematical model for different physical problems.
- 2. To understand the vector spaces, and vectors, and their properties.
- 3. To understand the different decomposition methods.
- 4. To develop an algorithm using mathematical technique for the solution of the research problems of the areas like biomedical signal processing, radar signal processing, and communications etc.

Course Contents:

Unit	Topics	Text book	Lectures
1.	Introduction to Systems of Linear Equations	[1] [5]	08
	Gaussian Elimination		
	Matrices and Matrix Operations		
	Inverses; Algebraic Properties of Matrices Elementary Matrices		
	and a Method for Finding		
	More on Linear Systems and Invertible Matrices		
	Diagonal, Triangular, and Symmetric Matrices		
	Applications of Linear Systems		
	Network Analysis (Traffic Flow)		
	Electrical Circuits		
	Balancing Chemical Equations		
	Polynomial Interpolation		
	Leontief Input-Output Models		
2.	Euclidean Vector Spaces	[1] [5]	06
	Vectors in 2-Space, 3-Space, and n-Space		
	Norm, Dot Product, and Distance in Rn		
	Orthogonality		
	The Geometry of Linear Systems		

	Cross Product		
3.	Real Vector Spaces, Subspaces, Linear Independence, Coordinates and Basis, Dimension, Change of Basis, Row Space, Column Space, and Null Space, Rank, Nullity, and the Fundamental Matrix Spaces, Matrix Transformations from to Properties of Matrix Transformations,	[1] [5]	08
4.	Eigen values and Eigenvectors, Diagonalization, Complex Vector Spaces, Differential Equations, Inner Products, Angle and Orthogonality in Inner Product Spaces, Gram—Schmidt Process; QR-Decomposition, Best Approximation; Least Squares Least Squares Fitting to Data, Function Approximation; Fourier Series, Orthogonal Matrices, Orthogonal Diagonalization Quadratic Forms, Optimization Using Quadratic Forms, Hermitian, Unitary, and Normal Matrices	[1] [5]	08
5.	Laplace Transform, Z-transform, Fourier Transform, DTFT, DFT, DCT, DST, STFT, and CWT with applications	[2][4]	06
6.	Basic Probability Concepts, Random variables, Special Probability Distributions	[3][6]	06
	Total Lectures		42

.

Evaluation Scheme

Test 1 : 15 marks
Test 2 : 25 marks

3. Test 3 : 35 marks

4. Internal Assessment: 25 marks

1. 10 Marks : Class performance, Tutorials & Assignments

10 Marks : Quizzes
5 marks : Attendance

Text Books

- 1. Harword & Chriss Rorrers, "Elementary Linear Algebra". John Wiley & Sons,
- **2** Proakis, John G. Digital signal processing: principles algorithms and applications. Pearson Education India.
- **3.** Oliber C. lbe "Fundamentals of Applied Probability and Random Processes" 2^{nd} Edition, Academic Press is an imprint of Elsevier
- **4.** S.Salivahanan, A, Vallavaraj, C Gnanapriya, "Digital Signal Processing", ,Tata McGraw-Hill Education, 2010

REFERENCE BOOKS

- **5.** Kenneth Hoffman, "Linear Algebra" 2^{nd} edition, PHI Publishers
- **6.** Hayes, Monson H. Digital signal processing Tata McGraw-Hill edition 2004