SOFT COMPUTING TECHNIQUES (Elective Subject)

Course Code:	13B1WEC831	Semester:	8th Semester, B. Tech (ECE), M.Tech(Ist year)
Credits:	3	Contact Hours:	L-3, T-0, P-0

Course Objectives

- 1. Develop the skills to gain a basic understanding of neural network theory and fuzzy logic theory.
- 2. Introduce students to artificial neural networks and fuzzy theory from an engineering perspective

Course Outcomes

Upon completion of the course, the student are expected to

- 1. Comprehend the fuzzy logic and the concept of fuzziness involved in various systems and fuzzy set theory.
- 2. Understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, approximate reasoning, fuzzy inference systems, and fuzzy logic
- 3. To understand the fundamental theory and concepts of neural networks, Identify different neural network architectures, algorithms, applications and their limitations
- 4. Understand appropriate learning rules for each of the architectures and learn several neural network paradigms and its applications
- 5. Reveal different applications of these models to solve engineering and other problems.

Unit	Topics	References (chapter number, page no. etc)	Lectures
1.	Introduction to fuzzy set theory: Probabilistic reasoning, Fuzzy sets, mathematics of fuzzy set theory, operations on fuzzy sets, comparision of fuzzy and crisp set theory.	Ross Ch 1,2 Sivanandam Ch 7,8	4
2.	Fuzzy mapping: one to one mapping, max-min principle, extension principle, implication rules – mamdani implications. Membership functions: Universe of discourse, mapping inside fuzzy domain, fuzzy membership mapping methods, and application to real world problems.	Ross Ch 2,3 Sivanandam Ch 9,10	10
3	Artificial Neural Networks (ANN) and their biological roots and motivations. Comparison	Sivanandam Ch1,2	8

Course Contents

	Between Artificial and Biological Neural Networks, Applications of Neural network. Network Architecture ,Taxonomy of neural networks: feed forward and recurrent networks with. Merits and limitations of neurocomputing.	Haykin Ch1,2		
4	Types of learning, supervised and unsupervised learning laws . Learnig Laws : Hebb's rule, Delta rule, Widrow - Hoff (The Least-Mean-Square) learning rule, correlation learning rule, instar and outstar learning rules, Competitive learning, Credit Assignment Problem, Error Correction learning, Memory based learning, , Boltzmann learning.	Sivanandam Ch 3 Haykin Ch 3,4	10	
5	The Perceptron and its learning law, Classification of linearly separable patterns, Multi-Layer Perceptron, Supervised Learning, Back-Propagation Learning law. Feed forward networks, Recurrent Networks.	Sivanandam Ch 3 Haykin Ch 4	6	
6	Winner takes-all Networks, Competitive Learning, Kohonen's Self organizing Maps, Introduction to Adaptive Resonance Theory.	Sivanandam Ch 5	4	
Total Number of Lectures				

Evaluation Scheme

- 1. Test 1 :15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

- 1.Simon Haykin, "ArtificialNeutral Networks".
- 2. Yegna Narayanan, "Artificial Neural Networks".
- 3. Timothy J. Ross, "Fuzzy Logic with Engineering Applications".
- 4. S.N.Sivanandam, S.N Deepa, "Principles of Soft Computing"

Reference Books

1. Bart Kosko, "Neural Network and Fuzzy Systems: A Dynamic System Approach to Machine" Prentice-Hall 1998

2. L. Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms, and Applications", Prentice-Hall, 1994

3. Jack M. Zurada, "Introduction to Artificial Neural Systems", PWS Publishing Co., Boston, 2002.

ONLINE MATERIAL

http://nptel.ac.in/courses/117105084/

http://nptel.ac.in/courses/108104049/