POWER ELECTRONICS LAB

(Core Subject)

Course Code:	1B1WEC671	Semester:	6 th Semester, B. Tech (ECE)
Credits:	1	Contact Hours:	L-0, T-0,P-2

Course Objectives

- 1. To know the behavior of Power semiconductor devices and compare their performances.
- 2. To know how to synthesize a power converter using power electronics equipment.

Course Outcomes

After the successful completion of the course, student should be able to:

- 1. Analyze and test the power semiconductor devices and their applications.
- 2. Compare and contrast various power semiconductor devices according to their applications.
- 3. Have confidence in dealing with high-power equipments and upgrade their performance.
- 4. Use the knowledge acquired through this lab to design circuits which are useful in day-day life.

List of Experiments

- 1. To study V-I characteristics of silicon controlled rectifier (SCR) and determine the break over voltage, on state resistance, holding current and latching current.
- 2. To study and verify V-I characteristics of DIAC.
- To study V-I characteristics of TRIAC in both directions and determine the break over voltage, on state resistance, holding current and latching current.
- 4. To verify the V-I Characteristic of Unijunction Transistor (UJT)
- 5. Design of an oscillator circuit using UnijunctionTtransistor (UJT)
- 6. To design a circuit for AC voltage control by using SCR and observe the effect of varying firing angle on average output voltage.
- 7. To design a circuit for illumination control of incandescent lamp using thyristor.
- 8. To study the performance of half wave controlled rectifier with R and RL load.
- 9. To design a fixed DC to variable DC convertor.
- 10. Mini Project

Evaluation Scheme

1.	Mid Sem Evaluation	20 Marks
2.	End Sem Evaluation	20 Marks
3.	Attendance	15 Marks
4.	Class response	30 Marks
5.	File	15 Marks

Total Marks 100 Marks

Text Books

- 1. Ned Mohan, Tore Undeland, and William Robbins, Power Electronics: Converters, Applications, and Design, 3rd edition, Wiley India.
- 2. Rashid Muhammad H., Power Electronics Circuits, Devices, and Applications, 3rd edition, Prentice hall of India.