THEROY AND APPLICATIONS OF CONTROL SYSTEMS

(Core Subject)

Course Code:	10B1WEC515	Semester:	5 th Semester, B. Tech (ECE)
Credits:	4	Contact Hours:	L-3, T-1, P-0

Course Objectives

The objectives are to study

- 1. To understand procedures for developing mathematical models of physical systems, and related analytical and numerical methods for predicting their behavior.
- 2. To develop the skill of designing compensating networks according to the desired design specifications.
- 3. Use computational tools in the modelling, simulation and analysis of linear control systems.
- 4. Understanding of stability of state space models and their controllability and observability in modern automation and control.
- 5. Ability to understand and design advance control schemes for industrial applications.

Course Outcomes

After studying this course the students would gain enough knowledge

- 1. The ability to analyze any physical system using mathematical model.
- 2. The ability to formulate reduced models for complex systems.
- 3. The skill to analyze the response of any LTI system.
- 4. The ability to design any system with desired specifications both in time and frequency domain.
- 5. The ability to derive, interpret and solve problems using modern state space control methods for continuous time and discrete time systems.
- 6. The skill to apply advance control schemes for various applications.

Course Contents

Unit	Topics	References (chapter number, page no. etc)	Lectures
1.	Introduction to Systems and Control: Open loop and closed loop control systems, components of control system: sensors, actuators, controllers, process, modeling principles of physical systems: electrical, mechanical, thermal and pneumatic systems, effect of feedback on gain, stability, sensitivity and noise, characteristics of transfer function models: poles, zeros, stability and minimal realization, block diagram algebra, signal flow graphs, Mason's gain formula, conversion between block diagram and signal	BC. Kuo : Chapter 1, 3, 4 M. Gopal: Chapter 4	6

	flow graph.		
2.	Response Analysis: Standard test input signals, transient and steady state response: first, second and higher order systems, system design specifications, error analysis: static and dynamic error coefficients, Effect of adding poles and zeroes, Correlation-ship between time and frequency domain specifications.	BC. Kuo : Chapter 7, 9 M. Gopal: Chapter 5	8
3	Stability Analysis: Absolute stability, relative stability, routh-hurwitz, root locus, bode plot, polar plot and Nyquist plot techniques, gain margin and phase margin, constant magnitude loci: M-circles, constant phase Loci: N-circles, nichol's chart. system identification: inverse bode plots. Effect of adding zero to the forward path, effect of adding pole to the forward path.	BC. Kuo : Chapter 6, 8, 9	10
4	Compensator Design: System design specifications, design of compensating networks (Lead, Lag, Lag-Lead) for specified control system performance using root locus and bode plot, concepts and applications of P, PD, PI and PID controllers.	BC. Kuo : Chapter 10	6
5	Linear State Variable Models: Concept of state, state space modeling: SISO and MIMO systems, useful transformations in state–space analysis and design, various forms: physical variable form, phase variable form, Jordan canonical form, solution of state equations, computation of state transition matrix: Laplace method, power series method and Cayley Hamilton method, derivation of transfer function from State variable model, decomposition of transfer function: direct decomposition, cascade decomposition, parallel decomposition, characteristics of linear state variable models, natural and forced responses, determination of a controllability and observability of a control system using Kalman and Gilbert tests.		8
6	Advanced Control Schemes: Control systems with multiple loops- cascade control, selective control systems: override control, split range	Stephanopoulos- Chapter 20, 21, 22	6

control, feed-forward and ratio control, adaptive and inferential control systems.		
Total Number of Lectures		44

Evaluation Scheme

- 1. Test 1 :15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

- 1. Benjamin C. Kuo, "Automatic Control Systems", Prentice Hall of India.
- 2. Nagrath & Gopal, "Control System Engineering", New age International.
- 3. Stephanopoulos, G., Chemical Process Control, Prentice Hall of India.

Reference Books

- 1. K. Ogata, "Modern Control Engineering", Prentice Hall of India.
- 2. Norman S. Mise, "Control System Engineering", Wiley Publishing Co.
- 3. Richard C Dorf, Robert H Bishop, "Modern Control Systems", Pearson Edu.

Web Resources: <u>http://nptel.ac.in/courses/108102043/</u>