Digital Electronics (Core Subject)

Course Code:	10B11EC401	Semester:	3 rd Semester B.Tech. (CSE and IT) 4th Semester, B. Tech. (ECE)	
Credits:	4	Contact Hours:	L-3, T-1, P-0	

Course Objectives

The objectives are to study

- 1. To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.
- 2. To prepare students to perform the analysis and design of various digital electronic circuits.

Course Outcomes

After studying this course the students would gain enough knowledge

- 1. Have a thorough understanding of the fundamental concepts and techniques used in digital electronics.
- 2. To understand and examine the structure of various number systems and its application in digital design.
- 3. The ability to understand, analyze and design various combinational and sequential circuits.
- 4. Ability to identify basic requirements for a design application and propose a cost effective solution.
- 5. The ability to identify and prevent various hazards and timing problems in a digital design.
- 6. To develop skill to build, and troubleshoot digital circuits.

Course Contents

	Course Contents					
Unit	Topics	References (chapter number, page no.	Lectures			
1.	Number System, Binary Codes and Boolean Algebra: Conversion of bases, Representation of negative numbers, 1's complement, 2's complement, arithmetic using 2's complement Hexadecimal code, weighted codes - BCD, Excess-3 code, Gray Code. Logic gates and Boolean Algebra.	1,2	6			
2.	Boolean function representation and minimization techniques: Standard and canonical representation and minimization of Boolean expressions using Karnaugh map.	3,4	7			

3	Combinational Logic Circuits: Half Adder, Full Adder, Half Subtractor, Full Subtractor, Full adder using half adder, BDC Adder. Carry Look ahead, Multipliers. Multiplexer/de- multiplexers, Encoders and Decoders.	5,6	8
4	Waveform and wave shaping generator using IC-555 based: 555 Timer, Astable and monostable multivibrator and bistable multivibrator.	8	2
5	Sequential Logic Circuits: Latches, Edge Triggered Flip Flops: SR, D, JK, Master slave JK,. Excitation tables, conversion of Flip Flops. State Diagrams	8	4
6	Counters: Synchronous and Asynchronous counters, Up/Down Counters, Design of Synchronous counters, Cascaded Counters, Counter Decoding, Counter applications	9	8
7	Shift registers: Shift register functions, Serial in/serial out shift registers, serial in parallel out/shift registers, Parallel In/Parallel out shift registers, bidirectional Shift registers, Shift register counters, Shift register Applications.	10	5
8	Analog to Digital & Digital to Analog Converters: Design of various A to D and D to A Converters.	14	2
9	Digital Logic Families: Parameters of Logic Families. Introduction to logic Families: DTL, RTL, TTL, CMOS.		2
Total Number of Lectures			44

Evaluation Scheme

Test 1 :15 marks
Test 2 : 25 marks
Test 3 : 35 marks

4. **Internal Assessment**: 25 marks

• 10 Marks : Class performance, Tutorials & Assignments

10 Marks : Quizzes5 marks : Attendance

Text Books

1. Thomas L Floyd "Digital Fundamentals"

Reference Books

- 1. M. Morris Mano. "Digital Logic and Computer Design",
- 2. M. Morris Mano, "Digital Design", Pearson Education Asia,.