15P1WPH213 Semiconducting Luminescent Materials

Subject Code	15P1WPH213		
Subject Name	Semiconducting Luminescent Materials		
Credits	3		Contact Hours: 03
Module No.	Subtitle of the Module	Topics	
1.	Principles of Photoluminescenc e	crystalline semiconduct gap semicon semiconduct optical beha	Photoluminescent solid systems; classification of solids; density of one-electron states; intrinsic ors; Doped semiconductors; Direct gap and indirect aductors; excitation in insulators and large band gap ors; Radiative transition in pure semiconductors; evior of doped semiconductors; Radative transitions and gap; Non radiative processes; p-n junctions.
2.	Narrow-Gap semiconductors	Introduction: Photoconductions arrays.	Narrow gap semiconductor materials; etive detectors; Photovoltaic detectors; Focal plane
3.	Solid state lighting	applications;	Low brightness applications; High brightness lattice mismstched strain free materials; Physics of ght emiiting diodes; solid stste lamps; future outlook.
4.	Fundamentals of the quantum confinement effect	sphere; Mu Atomistic a approaches;	to quantum dots; Hierarchies of theory; Particle in a altiband effective mass approximation approach; approaches; Ptredeictions and limitations of the Dynamical and higher order processes: Hot Exciton ynamics; Multiple exciton structures, Recombination on.
5	Selenide and sulfide quantum dots	photolumine nanocrystal quenching b charge relaxa	binding constants; Nanocrystal photolouinescence y charge and energy transfer; nanocrystals interband ation; nanocrystals photoluminescence intermittency.
6	Photoluminescenc e spectroscopy of single semiconductor nanoparticle	Photolumine Photolumine	s Single molecule fluorescence spectroscopy; scence of single semiconductor nanoparticles; scence of doped semiconductor nanoparticles; ectron transfer of single semiconductor nanoparticle.
7.	Biological applications of		Materials; Solubilization; Functionalization; Toxicity; Biological applications: Cellular labeling; Single

I - I	quantum dot tracking; Intracellular delivery and therapeutics; FRET based biosensing; In vivo deep tissue Imgaing.
quantum dots	

	Recommended Reading (Books/Journals/Reports/Websites etc.: Author(s), Title, Edition, Publisher, Year of Publication etc. in IEEE format)		
1.	Fundamentals of semiconductors: Physics and Materials properties, Peter Y. Yu and Manuel Cardona, Springer		
2.	Principles of fluorescence spectroscopy, Lakowicz, springer		
3.	Learning Bio-Micro-nanotechnology, Mendelson, CRC Press		
4.	Handbook of Luminescent semiconductor materials, Bergman and Mchale (EDs), CRC Press		
5.	Nanomedicine, Kardan, Chen and Xie, Wiley		