
Virtual Lab Computer Science and Engineering

IIIT Hyderabad: Database LAB

JUIT Lab: Database LAB (10B17CI372)

--

1. Third Normal Form

2. Boyce-Codd Normal Form

--

Exp-1: Third Normal Form

Introduction

The Third normal form (3NF) is an important form of database normalization. 3NF is

said to hold if and only if both of the following conditions hold:

1. The relation R (table) is in second normal form (2NF)

2. Every non-prime attribute of R is non-transitively dependent (i.e. directly

dependent) on every candidate key of R.

A non-prime attribute of R is an attribute that does not belong to any candidate key

of R. A transitive dependency is a functional dependency in

which X⟶Z (X determines Z) indirectly, by virtue of X⟶Y and Y⟶Z (where it is not the

case that Y⟶X).

Theory

There are two basic requirements for a database to be in third normal form:

 Already meet the requirements of both 1NF and 2NF

 Remove columns that are not fully dependent upon the primary key.

Imagine that we have a table of widget orders that contains the following attributes:

 Order Number

 Customer Number

 Unit Price

 Quantity

 Total

Remember, our first requirement is that the table must satisfy the requirements of 1NF

and 2NF. Are there any duplicative columns? No. Do we have a primary key? Yes,

the order number. Therefore, we satisfy the requirements of 1NF. Are there any

subsets of data that apply to multiple rows? No, so we also satisfy the requirements of

2NF.

Now, are all of the columns fully dependent upon the primary key? The customer

number varies with the order number and it doesn't appear to depend upon any of the

other fields. What about the unit price? This field could be dependent upon the

customer number in a situation where we charged each customer a set price. However,

looking at the data above, it appears we sometimes charge the same customer different

prices. Therefore, the unit price is fully dependent upon the order number. The

quantity of items also varies from order to order, so we're OK there.

What about the total? It looks like we might be in trouble here. The total can be

derived by multiplying the unit price by the quantity, therefore it's not fully dependent

upon the primary key. We must remove it from the table to comply with the third

normal form. Perhaps we use the following attributes:

 Order Number

 Customer Number

 Unit Price

 Quantity

Now our table is in 3NF. But, you might ask, what about the total? This is a derived

field and it's best not to store it in the database at all. We can simply compute it "on

the fly" when performing database queries. For example, we might have previously

used this query to retrieve order numbers and totals:

 SELECT OrderNumber, Total

 FROM WidgetOrders

We can now use the following query:

 SELECT OrderNumber, UnitPrice * Quantity AS Total

 FROM WidgetOrders

to achieve the same results without violating normalization rules.

Procedure

Kindly refer to the common procedure page for details of how to use this platform.

Simulation

Lets consider the following example of a database of a tournament and the details of

its winner. We represent the dependencies between the attributes of this table using "

<Attribute1> : <Attribute2> ", which means that Attribute1 depends on Attribute2.

table = """ Tournament Year Winner Date_of_Birth """ primary_key

= """ Tournament Year """ Dependencies = ['Winner :

Date_of_Birth']

We get the following table after normalizing the table into Third Normal Form.

import re def convertTo3NF(): table1 = table.strip() tokens =

re.split("\s+", table1) for i in Dependencies: rel = i.split(" :

") l = [] l.append(rel[1].strip()) print rel[0],rel[1] tokens =

list(set(tokens) - set(l)) for i in tokens: print i,

convertTo3NF()

Winner Date_of_Birth

Tournament Winner Year

Quiz

1. Consider the following Relation Schema. EMP_DEPT (ENAME, ENO, DOB,

ADDRESS, DNO, DNAME, DMANAGER). Convert it into Third Normal

Form.

2. Consider the following Schema. CAR_SALE (Car#, Date_Sold, Salesman#,

Commission%, Discount_amt). Convert it into Third Normal Form.

3. Consider the following relation for publised books. BOOK (Book_title,

Authorname, Book_type, price, Author_aff, Publisher). Convert it into 3NF.

References

1. http://c2.com/cgi/wiki?ThirdNormalForm

2. Database Management systems by Elmasri and Navathe

3. http://en.wikipedia.org/wiki/Third_normal_form

http://sage.virtual-labs.ac.in/home/pub/23/

4. http://databases.about.com/od/administration/l/bldef_3nf.htm

5. http://www.blueclaw-db.com/database_3rd_normal_form.htm

Exp-2: Boyce-Codd Normal Form

Introduction

A relation R is in Boyce-Codd normal form (BCNF) if and only if every determinant

is a candidate key. The definition of BCNF addresses certain (rather unlikely)

situations which 3NF does not handle. The characteristics of a relation which

distinguish 3NF from BCNF are given below. Since it is so unlikely that a relation

would have these characteristics, in practical real-life design it is usually the case that

relations in 3NF are also in BCNF. Since relations in 3NF but not in BCNF are

slightly unusual, it is a bit more difficult to come up with meaningful examples. To be

precise, the definition of 3NF does not deal with a relation that:

1. has multiple candidate keys, where
2. those candidate keys are composite, and
3. the candidate keys overlap (i.e., have at least one common attribute)

Theory/Procedure

3NF tables not meeting BCNF

Only in rare cases does a 3NF table not meet the requirements of BCNF. A 3NF table

which does not have multiple overlapping candidate keys is guaranteed to be in

BCNF. Depending on what its functional dependencies are, a 3NF table with two or

more overlapping candidate keys may or may not be in BCNF

An example of a 3NF table that does not meet BCNF is:

Today's Court Bookings

Court Start Time End Time Rate Type

1 09:30 10:30 SAVER

1 11:00 12:00 SAVER

1 14:00 15:30 STANDARD

2 10:00 11:30 PREMIUM-B

2 11:30 13:30 PREMIUM-B

2 15:00 16:30 PREMIUM-A

 Each row in the table represents a court booking at a tennis club that has one
hard court (Court 1) and one grass court (Court 2)

 A booking is defined by its Court and the period for which the Court is
reserved

 Additionally, each booking has a Rate Type associated with it. There are four
distinct rate types:

 SAVER, for Court 1 bookings made by members
 STANDARD, for Court 1 bookings made by non-members
 PREMIUM-A, for Court 2 bookings made by members
 PREMIUM-B, for Court 2 bookings made by non-members

The table's superkeys are:

 S1 = {Court, Start Time}
 S2 = {Court, End Time}
 S3 = {Rate Type, Start Time}
 S4 = {Rate Type, End Time}
 S5 = {Court, Start Time, End Time}
 S6 = {Rate Type, Start Time, End Time}
 S7 = {Court, Rate Type, Start Time}
 S8 = {Court, Rate Type, End Time}
 ST = {Court, Rate Type, Start Time, End Time}, the trivial superkey

Note that even though in the above table Start Time and End Time attributes have no

duplicate values for each of them, we still have to admit that in some other days two

different bookings on court 1 and court 2 could start at the same time or end at the

same time. This is the reason why {Start Time} and {End Time} cannot be considered

as the table's superkeys.

However, only S1 to S4 are candidate keys (that is, minimal superkeys for that

relation) because e.g. S1 ⊂ S5, so S5 cannot be a candidate key.

Recall that 2NF prohibits partial functional dependencies of non-prime attributes (ie

an attribute that does not occur in ANY candidate key) on candidate keys, and that

3NF prohibits transitive functional dependencies of non-prime attributes on candidate

keys.

In Today's Court Bookings table, there are no non-prime attributes: that is, all

attributes belong to some candidate key. Therefore the table adheres to both 2NF and

3NF.

The table does not adhere to BCNF. This is because of the dependency Rate Type →

Court, in which the determining attribute (Rate Type) is neither a candidate key nor a

superset of a candidate key.

Dependency Rate Type → Court is respected as a Rate Type should only ever apply

to a single Court.

The design can be amended so that it meets BCNF:

Rate Types

Rate Type Court Member Flag

SAVER 1 Yes

STANDARD 1 No

PREMIUM-A 2 Yes

PREMIUM-B 2 No

Today's Bookings

Rate Type Start Time End Time

SAVER 09:30 10:30

SAVER 11:00 12:00

STANDARD 14:00 15:30

PREMIUM-B 10:00 11:30

PREMIUM-B 11:30 13:30

PREMIUM-A 15:00 16:30

Example: The candidate keys for the Rate Types table are {Rate Type} and {Court,

Member Flag}; the candidate keys for the Today's Bookings table are {Rate Type,

Start Time} and {Rate Type, End Time}. Both tables are in BCNF. Having one Rate

Type associated with two different Courts is now impossible, so the anomaly affecting

the original table has been eliminated.

Achievability of BCNF

In some cases, a non-BCNF table cannot be decomposed into tables that satisfy BCNF

and preserve the dependencies that held in the original table. Beeri and Bernstein

showed in 1979 that, for example, a set of functional dependencies {AB → C, C →

B} cannot be represented by a BCNF schema. Thus, unlike the first three normal

forms, BCNF is not always achievable.

Consider the following non-BCNF table whose functional dependencies follow the

{AB → C, C → B} pattern:

Nearest Shops

Person Shop Type Nearest Shop

Davidson Optician Eagle Eye

Davidson Hairdresser Snippets

Wright Bookshop Merlin Books

Fuller Bakery Doughy's

Fuller Hairdresser Sweeney Todd's

Fuller Optician Eagle Eye

For each Person / Shop Type combination, the table tells us which shop of this type is

geographically nearest to the person's home. We assume for simplicity that a single

shop cannot be of more than one type.

The candidate keys of the table are:

 {Person, Shop Type}
 {Person, Nearest Shop}

Because all three attributes are prime attributes (i.e. belong to candidate keys), the

table is in 3NF. The table is not in BCNF, however, as the Shop Type attribute is

functionally dependent on a non-superkey: Nearest Shop.

The violation of BCNF means that the table is subject to anomalies. For example,

Eagle Eye might have its Shop Type changed to "Optometrist" on its "Fuller" record

while retaining the Shop Type "Optician" on its "Davidson" record. This would imply

contradictory answers to the question: "What is Eagle Eye's Shop Type?" Holding

each shop's Shop Type only once would seem preferable, as doing so would prevent

such anomalies from occurring:

Shop Near Person

Person Shop

Davidson Eagle Eye

Davidson Snippets

Wright Merlin Books

Fuller Doughy's

Fuller Sweeney Todd's

Fuller Eagle Eye

Shop

Shop Shop Type

Eagle Eye Optician

Snippets Hairdresser

Merlin Books Bookshop

Doughy's Bakery

Sweeney Todd's Hairdresser

In this revised design , the "Shop Near Person" table has a candidate key of {Person,

Shop}, and the "Shop" table has a candidate key of {Shop}. Unfortunately, although

this design adheres to BCNF, it is unacceptable on different grounds: it allows us to

record multiple shops of the same type against the same person. In other words, its

candidate keys do not guarantee that the functional dependency {Person, Shop Type}

→ {Shop} will be respected.

A design that eliminates all of these anomalies (but does not conform to BCNF) is

possible. This design consists of the original "Nearest Shops" table supplemented by

the "Shop" table described above.

Nearest Shops

Person Shop Type Nearest Shop

Davidson Optician Eagle Eye

Davidson Hairdresser Snippets

Wright Bookshop Merlin Books

Fuller Bakery Doughy's

Fuller Hairdresser Sweeney Todd's

Fuller Optician Eagle Eye

Shop

Shop Shop Type

Eagle Eye Optician

Snippets Hairdresser

Merlin Books Bookshop

Doughy's Bakery

Sweeney Todd's Hairdresser

If a referential integrity constraint is defined to the effect that {Shop Type, Nearest

Shop} from the first table must refer to a {Shop Type, Shop} from the second table,

then the data anomalies described previously are prevented.

Simulation

Lets consider the following example of a university database consisting of a student,

the courses he has taken and the instructor for the course. Similar to the third normal

form, we represent the dependencies between the attributes of this table using " : ",

which means that Attribute1 depends on Attribute2.

table = """ Student Course Instructor """ primary_key = """ Student Course

""" Dependencies = ['Instructor : Course']

After normalizing the above database to be in BCNF, we get the following.

Quiz

1. Prove that any relational schema with two attributes is in BCNF.
2. Convert the given Relation Schema into BCNF. TEACH (Student, Course,

Instructor).
3. Consider the following relation for publised books. BOOK (Book_title,

Authorname, Book_type, price, Author_aff, Publisher). Convert it into BCNF.

References

1. http://en.wikipedia.org/wiki/Boyce%E2%80%93Codd_normal_form
2. Database Management systems by Elmasri and Navathe
3. http://databases.about.com/cs/specificproducts/g/bcnf.htm
4. http://db.grussell.org/section009.html

